Spherical Harmonic Representation of the Gravity
Field Potential

1 Introduction

Satellites in low-Earth orbit are affected by a broad spectrum of perturbations due
to the Earth’s gravity field. The largest of these perturbations are produced by the
Earth’s oblateness. Beyond the oblateness, there exist much smaller undulations in
the gravity field. These variations produce much smaller, but certainly observable,
effects on low-Earth orbiters.

The modeling of the Earth’s gravity field using spherical harmonics is convenient
for both numerical integration of satellite trajectories as well as analytic developments
for the orbital perturbations. Both of these tasks are briefly reviewed. The equations
of motion of a satellite moving in the gravitational field are derived. Computer imple-
mentation of these equations is facilitated by recurrence relations for the Associated
Legendre Functions which are also given.

The principal perturbations produced on a satellite orbit are then defined and
approximate expressions quantifying the perturbations are found using Kaula’s ap-
proach.

2 Mathematical Model

2.1 Gravitational Potential

The common approach for modeling the gravitational field of a planetary body is
through the spherical harmonic representation,
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where: g is the product of the universal constant of gravitation G and the mass of
the Earth M «a. is the semi-major axis of the Earth’s reference ellipsoid; r, ¢, A are
the satellite distance, latitude, and longitude, respectively, in a body-fixed coordinate
system; Cy,,, S¢n are spherical harmonic coefficients of degree ¢ and order m; and
Py, are the Associated Legendre Functions of degree ¢ and order m. A gravitational
model consists of a set of constants that specify u, a. and the Cy,,, Sp,, coefficients.
It should also be noted that such a set of constants also implicitly defines a body-fixed
coordinate system. The coordinate system defined is precisely that which was used
in the solution of the spherical harmonic coefficients.
This representation of the geopotential can be thought of as consisting of three
constituent parts.
V=W+WV+1, (2)



The first part is simply the leading term of the expansion corresponding to the degree
and order zero term. The Associated Legendre Function, Fyy has a value of one as
does the Cyy coefficient. So the leading term is simply,

Vo="1 (3)
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This is the familiar potential resulting from treating the body as point mass and that
used for deriving the fundamental results of two body motion.

The second part of the spherical harmonic representation are those terms (besides
the above two body term) which do not have a longitude dependence. These are
the terms corresponding to m = () and are denoted as the zonal contribution to the
potential, .
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The degree 2 zonal term models the contribution due to the planetary oblateness.
As such, it is the second largest contributor to the overall potential following the
central body contribution. (The degree 1 term is zero assuming that the center of the
Earth-fixed coordinate system coincides with the center of mass of the Earth.) The
notation J; is often used for the zonal coefficients instead of the above Cyy. The two
notations simply differ in sign,
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so that the zonal part of the potential could also be written in the form,
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The C notation will be used throughout this paper.
The remaining part of the spherical harmonic representation is that part depend-
ing on longitude,
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The largest longitudinal contributor to the potential is usually the degree 2 and order
2 terms. These terms represent the amount that the planet is “out of round” about the
equator. (As with the degree 1 zonal coefficient, the degree 1 and order 1 coefficients
will be zero under the assumption that the center of the coordinate system coincides
with the center of mass.)

The spherical harmonic representation of the potential (Eq. 1) can then be written
as,
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In the general case, where temporal variations in the potential exist (e.g., tides)
the spherical harmonic representation is still valid though the geopotential coefficients

(Ctm, Se.m) then become time dependent.

2.1.1 Spherical Harmonics

To better understand the utility of using a spherical harmonic representation of the
geopotential a closer look at the spherical harmonic functions is required. The spher-
ical harmonic functions are those functions formed by the product of the Associated
Legendre Functions with cosm\ and sin m\ which appear in Eq. 1,

Apm(0,N) = Py (sing)cosmA  and By, (¢, A) = Pr,(sing)sinmA  (9)

These functions are orthogonal. Thus, each function (for a given degree and order)
can be thought of as contributing independent information with an amplitude given
by their respective Cy,,, and S¢,, coefficients.

In addition to being orthogonal, the qualitative shapes of the spherical harmonics
are easily visualized. The zonal harmonics (corresponding to m = 0) have no lon-
gitude dependence and have ¢ zeroes hetween +£90 degrees in latitude. So the even
degree zonals are symmetric about the equator and the odd zonal are asymmetric.
Note also that as the degree increases the number of zeroes in latitude increases and
the harmonics represent finer and finer latitudinal variations in the potential. If only
large scale (such as the oblateness) variations need to be modeled then only the lowest
degree zonal terms need to be used.

The non-zonal harmonics all have longitudinal variations. The presence of the
cosmA and sinmA give the functions 2m zeroes in longitude. And the Associated
Legendre Functions have { —m zeroes in latitude. So, similar to the zonals, the higher
degree and order harmonics represent finer and finer spatial detail of the gravitational
potential. The non-zonal coefficients are called tesserals and for the specific case of
{ = m they are referred to as sectorials.

Generally, the spherical harmonics can be thought of as representing variations in
the gravitational potential that have wavelengths of the circumference of the Earth
divided by m in longitude, and divided by ¢ — m in latitude.

2.1.2 Normalization

The spherical harmonic coefficients appearing in Eq. 1 are unnormalized. These coef-
ficients tend to very small values as the degree increases. This is partly a consequence
of the nature of the Earth’s gravity field but is for the most part due to the fact that
the Associated Legendre Functions tend to large values as degree increases. Thus it
is numerically advantageous to normalize the Associated Legendre Functions and the
coefficients. The normalization is achieved by multiplying the Legendre functions by
a scale factor depending on the degree and order of the function. Denoting normalized



values by an overbar, the normalized Associated Legendre Functions are,
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where the Kronecker delta, d,,9, is equal to 1 if m is zero and equal to 0 if m is greater
than zero. The geopotential coefficients, Cy,, and S ,,, are normalized by the inverse
of this scale factor,
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The spherical harmonic expansion of the geopotential (Eq. 1) can now be written in
terms of normalized quantities,
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This is usually the preferred formulation for numerical implementations of the spher-
ical harmonic representation. For many analytical developments (such as the effect
on orbital motion) it is easier to work with the unnormalized form (Eq. 1).

2.1.3 Associated Legendre Functions

Evaluation of the spherical harmonic expansion requires evaluating the Associated
Legendre Functions. This evaluation is most conveniently performed using recurrence
relations. If only a few terms are needed (low degree and order) then explicit coding
of the functions may be more desirable. In general the Associated Legendre Function
of degree ¢ and order m is,
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The first few of these functions are given in Table 1.

Table 1. Associated Legendre Functions P, ()

Order m
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Recurrence relations for evaluating these functions are generally in one of two
forms. The difference is due to whether the recurrence is done holding the degree
fixed or holding the order fixed. Either approach allows the computation of all the
needed Legendre functions. In both cases, the starting values for the recurrences are
the £ = m and ¢ = m + 1 functions which are easily computed from,
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One recursion is to compute %, and P,y and then compute the functions for
all lower orders of degree (¢ using,
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The alternate recursion is to compute ¢ and P, ¢ and then compute the func-
tions for all higher degrees using,
1
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The recurrence relations can also be rewritten to directly work with the normalized
Associated Legendre Functions. The recurrence equivalent to Eq. 16 in normalized
form is,
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where Py, = P;, if m >0 and Py = \/LQPZU when m = 0.
The recurrence equivalent to Eq. 17 in normalized form is,
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2.2 Gravitational Acceleration

The gravitational acceleration at any given location is obtained by computing the
gradient of the potential. Since the potential is given as a function of Earth-fixed
spherical coordinates, it is most convenient to compute the gradient in the same
system. In Earth-fixed spherical coordinates, this gradient is,

v . 19V 1 Qv

— gy + ————1i) 20
r(‘)gbuff—i_rcosqbi))\”\ (20)

where ., i, and @) are unit vectors in the r, ¢, A basis. This basis has @, pointing
along the radius vector to the satellite, @, is in the direction of increasing north



latitude and ) is in the direction of increasing East longitude. The acceleration
vector obtained from this expression will be the inertial acceleration for the point
of interest. Though, as noted, the components of the acceleration are given in the
Earth-fixed coordinate system. For most applications it will be desired to have the
components of the acceleration expressed in an inertial (non-rotating) coordinate
system. This is accomplished by applying the appropriate coordinate transformation
from the spherical coordinates to the desired coordinate system. So as a first step,
the components of the inertial acceleration in the Earth-fixed (rotating) coordinate
system are obtained. Substituting for the gravitational potential (Eq. 1) and taking
the indicated partials in Eq. 20 gives the acceleration vector,
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Notice that the leading term of the radial component (degree and order equal to zero)
is simply the expected two-body gravitational acceleration —s/r2. Also, if only zonal
terms are used (m = 0), then the longitudinal component of the acceleration is zero.

Next, the Earth-fixed Cartesian components of the acceleration can be obtained
by rotating from the spherical coordinates to the x, y, 2z basis. Let the components
of the acceleration in spherical coordinates be represented by,

a= CLT‘L_[r + a<;)’ﬁ¢ + a,\‘LT,\ (22)

where the components «a,., a, and ay are given in Eq. 21. The acceleration vector in
Cartesian coordinates can be written as,

Ayye = A1, + ayily, + a1, (23)
where @,, @, and @, are the Cartesian unit vectors in the Earth-fixed (rotating)
coordinate system. The Cartesian components of the acceleration can be obtained
from the spherical coordinate components through the standard transformation,
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Having obtained the Earth-fixed Cartesian components of the acceleration one
further coordinate transformation is necessary to obtain the acceleration components
in the defined inertial coordinate system. If the matrix 1" represents the coordinate



transformation from the Earth-fixed system to the inertial coordinate system, then
the acceleration components in the inertial system will be,

Uxyy = T”’:vyz (25>
where @y, is the inertial acceleration vector in inertial coordinates,

with @y, @, and @, being the unit vectors of the Cartesian inertial coordinate system.
In component form. this final transformation will have the structure,
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The actual elements of the transformation matrix T" depend on the inertial coor-
dinate system being used. In the most general case, this transformation will account
for polar motion (the motion of the spin axis with respect to the Earth crust), Earth
rotation (the largest effect) and, precession and nutation (the motion of the spin axis
with respect to the stars). In the simplest case, all of these effects are neglected
except for Earth rotation. This defines a coordinate system with the same 2z axis as
the Earth-fixed system but not rotating with the Earth. For many applications such
a system is effectively inertial. The transformation from the Earth-fixed system to
this non-rotating system is simply,
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where ¢ is the Greenwich Hour Angle (the angle from a reference direction, usually
the Vernal Equinox, to the Greenwich meridian).

2.2.1 Example Equations of Motion

The equations of motion for a satellite moving in a gravitational field modeled in
spherical harmonics are given by Eq. 27. In the most general case, the components
of the acceleration in spherical coordinates are evaluated (Eq. 21) complete to the
highest degree and order of the gravity model being used. These components are
then rotated to Earth-fixed Cartesian components (Eq. 24) and finally to inertial
coordinates as shown in Eq. 27.

As an example, the resulting equations of motion due to the second and third de-
gree zonal will be presented. The second degree zonal is the most important (largest)
term of the potential and is necessary for the most rudimentary modeling of orbital
motion. The third degree zonal is responsible for long period (on the order of 100
days) variations in the elements of an orbiting spacecraft and should be included for
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any long term orbit propagation studies. Assume that the inertial coordinate system
to be used is one neglecting polar motion, precession and nutation. That is, the ma-
trix defined in Eq. 28 is the transformation from Earth-fixed (rotating) coordinates

to the inertial (non-rotating) system. Letting, X, Y, Z represent the location of the
satellite in this inertial system, the equations of motion for the satellite are,
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The Greenwich Hour Angle, #. appearing in the transformation matrix (Eq. 28) does
not appear in these equations of motion, because there is not any longitudinal vari-
ation in the potential when only zonal terms are used. So the acceleration of the
spacecraft is independent of it’s longitudinal location with respect to Greenwich.

3 Earth’s Gravity Field

Numerous spherical harmonic models of the Earth’s gravity field have been developed.
These models are primarily based on the Earth-based tracking of low-Earth orbit
satellites. Other data types that are valuable in estimating the Earth’s gravity field
include surface gravity measurements, satellite-to-satellite tracking and more recently,
satellite radar-altimeter measurements of the ocean surface. The maximum degree
(¢) of the spherical harmonic representations of the Earth is more than 300 in some
models. Models based solely on satellite tracking data usually have a maximum degree
of approximately 50. Indeed, for most satellite applications, high degree models are
not needed due to the insensitivity of the satellite motions to the small scale features
represented in such models.

A good general purpose model for satellite applications is the JGM-2 model devel-
oped jointly by the NASA Goddard Space Flight Center (GSFC) and the University
of Texas Center for Space Research (Nerem et al., 1994). This model is based on
the tracking data of Earth satellites and surface gravity measurements; the model
is complete to degree and order 70. The accuracy of this model is greatly improved
with respect to earlier Goddard Earth Models (GEM). In addition to estimating the



spherical harmonic coefficients of the gravity field, estimates of the accuracy of those
coefficients are also computed. Such accuracy estimates are very valuable when at-
tempting to estimate the orbit error which may be induced when using the model for
orbit propagation.

Recently, a newer JGM (JGM-3) model has been produced ( Tapley et al., 1996).
This model is based on more satellite tracking data and includes some GPS tracking
of the Topex/Poseidon spacecraft. The overall accuracy is improved with respect to
JGM-2.

Table 2. The JGM-2 Gravity Model.
Normalized Zonals C in units of 1 x 10~

{ m Com o C m Cyy g  m Cyp, o
2 0 —484165.48 11 25 0 162 1.11 S0 452 127
30 957.12 .03 2% 0 821 1.29 9 0 —.16 1.28
4 0 540.14 .26 27 0 4.09 1.23 50 0 -3.8% 127
5 0 68.46 .16 28 0 —1247 1.33 51 0 —6.22 1.25
6 0 ~150.00 .35 20 0 350 1.31 520 92 123
70 90.95 .36 300 941  1.39 53 0 565 1.2
8 0 1930 52 310 501  1.39 50 95 1.18
9 0 26.70 .57 32 0 —463 1.32 55 0 226 1.18
0 o 53.89 .66 33 0 — 45 147 56 0 —2.85 .15
im0 —49.31 .75 34 0 643 1.30 57 0 -—2.34 1.13
12 0 3561 .83 3 0 532 1.38 55 0 —381 1.2
13 0 39.13 .98 36 0 —6.05 127 50 0 —.17 1.09
14 0 —22.00  1.05 37 0 —536 1.34 60 0 —3.05 1.08
15 0 456 1.3 380 A7 1.23 61 0 58 1.05
16 0 —5.55  1.09 39 0 2.06 1.42 62 0 163 1.04
17 0 1774 1.04 40 0 —176 1.30 63 0 -—260 1.02
18 0 6.66 .99 4 0 -186 1.38 64 0 —223 1.00
19 0 247 .95 2 0 1.66 1.36 65 0 06 .97
20 0 19.79 113 430 546  1.38 66 0 —.49 .94
21 0 772 1.01 4 0 215  1.32 67 0 13 9l
22 0 —10.81 1.28 45 0 =547 1.32 65 0 83 .87
23 0 2248  1.08 46 0 —146 1.27 69 0 160 .81
240 —2.84 1.26 47 0 — 85 1.33 70 0 .81 .78

The JGM-2 normalized zonal coefficients, complete to degree 70, are given in Table
2. The nonzonal coefficients, up to degree and order 30, are given in Table 3 (the
model contains coefficients up to degree and order 70). Along with the coefficient
values in each table, the estimated uncertainty (o) of the individual coefficients is
also given. The gravitational constant and equatorial radius specified for the JGM-2
model are,

= GM = 3.986004415 x 10" m*/s>  and  a, = 6378136.3 m (32)

Several points can be made by examining the coefficient values and their uncer-
tainties. Foremost, the value of the second degree zonal coefficient is seen to be more
than two orders of magnitude larger than any other coefficient. The next largest coef-
ficients are those of degree 2 and order 2. Analogous to the second degree zonal which
represents the oblateness of the Earth, these coefficients correspond to the ellipticity
about the equator.

Also evident is that the magnitude of the coefficients decreases significantly as the
degree increases (keep in mind that these are normalized coefficients and effectively
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Figure 1: Absolute value of the normalized JGM-2 coefficients and Kaula’s Rule.

have equal weight in their total contribution to the gravitational potential). This
characteristic has been formalized in the so-called “Kaula’s Rule” (Kaula, 1966). This
rule gives the expected size of the Earth’s normalized harmonic coefficients of degree
( to be £107°/¢2. This rule of thumb allows one to estimate the expected magnitude
of a gravitational coefficient if a value is not otherwise known (this is particularly
convenient for higher degree coefficients for which accurate estimates have generally
not been obtained). The magnitude of the JGM-2 coefficients (complete to degree
and order 70) are plotted in Figure 1 along with Kaula’s Rule.
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Table 3. The JGM-2 Gravity Model. Normalized Sectorials and Tesserals
Cim and Sy, in units of 1 x 1077

~

S/m

éﬁ m

S Im

( m  om o o { m o o
2 1 —19 .00 120 .00 2 2 2439.08 .12 —1400.11 .12
31 202840 42 248.81 .42 32 90441 .27  —619.23 .29
4 1 —536.37 .24 —47342 .23 4 2 350.35 .43 662.87 .44
5 1 -59.12 .84 -9553 .85 5 2 65339 .68 —323.78 .71
6 1  —7613 .49 26.56 .49 6 2 48.65 .80  —373.79 .84
71 27583 1.20 96.78  1.18 72 32788 1.24 94.03  1.27
8 1 2328 90 59.20 89 8 2 7876 1.14 66.25 1.2
9 1 14627 1.35 20.65 1.27 9 2 2453 1.60 —33.78  1.59
0 1 83.63 1.15 —131.96 1.09 10 2 —91.97 1.29 —52.51  1.40
11 14.28 142  —27.17 1.28 12 17.00 163 —97.75  1.60
12 1 —54.00 129 —4126 121 12 2 1191 129 31.93  1.43
13 1 —53.66 1.39 40.07  1.29 13 2 55.82  1.63 —62.76  1.58
4 1 —1940 1.37 27.48  1.35 14 2 -3587 1.27 —3.70  1.43
51 1175 1.32 710  1.35 15 2 —2035 1.59 —32.88 155
6 1 2779 1.32 3439 1.35 6 2 —2240 141 2599  1.55
17 1 —2753 139  —29.04 153 17 2 —1825 1.37 9.79  1.45
18 1 394 127 —39.12 1.32 18 2 12,56  1.46 13.98  1.59
19 1 —9.04  1.40 ~1.12 158 19 2 3130 1.42 ~3.94  1.54
20 1 849  1.26 5.83  1.38 20 2 2049 1.46 1384  1.58
21 1 —1817 1.49 27.02  1.63 21 2 —2.78 145 460 150
22 1 13.50  1.26 —1.95 147 22 2 —2398 148 —64 157
23 1 8.24  1.48 15.78  1.64 23 2 —14.72 155 —520 1.64
24 1 —2.76 131 —5.16  1.53 24 2 —1.15 157 1473 1.64
25 1 462 144  —11.10 1.61 25 2 19.19  1.61 7.86 177
2% 1 ~1.93 1.34 ~6.94  1.56 2% 2 —52 159 1353 1.67
27 1 409 1.52 —56  1.68 21 2 554 1.57 81 170
28 1 —6.20  1.40 6.01 1.59 28 2 —14.99 1.5 —-10.13  1.65
29 1 62 156 —-8.35 1.73 29 2 —5.24 158 —2.98  1.69
30 1 —.86  1.45 —46  1.63 30 2 —9.00  1.56 A0 1.67
3 3 72115 20 1414.04 .20
4399026 .23 —201.01 .22 4 4 —188.49 .21 308.85 .21
5 3 —451.90 .39 -215.10 .38 5 4 —295.08 .25 49.67 .24
6 3 57.95 .65 9.03 .62 6 4 —86.30 .37  —471.67 .37
73 25090 .83 -216.63 .84 74 —27555 55 —12386 .53
8 3 —2081 1.15 —8666 1.09 8 4 —24481 .79 7029 .79
9 3 —161.92 132 —75.14 1.33 9 4 —853  1.01 1921 .99
0 3 —6.04 148 —153.61 1.40 10 4 —84.16 1.26 —78.91  1.26
11 3  —2083 156 —148.04 1.52 11 4 —40.62 1.43 —63.08 1.1
12 3 3851  1.54 24.34  1.46 12 4 —68.96 150 4.08 152
13 3 —2239 154 97.62 147 13 4 —1.37 156 1341 157
14 3 35.04  1.51 21.32  1.43 14 4 158 145 ~20.86  1.49
5 3 5274 1.57 14.22 145 15 4 —42.80 1.48 8.17  1.52
16 3 —34.04 145 —23.74 1.33 6 4 4044 1.45 46.00  1.47
17 3 715 1.62 7.96 147 7 4 791 143 2322 1.48
18 3 —421 156 —2.74  1.43 18 4 5254 1.43 201 141
19 3 —9.92  1.62 —2.49 148 19 4 1512 1.50 —5.79  1.52
20 3 ~5.85 1.61 3511  1.53 20 4 544 1.49 —23.45 147
21 3 19.98  1.80 20.95 1.64 21 4 ~5.95  1.48 16.95 1.47
2 3 1015 1.68 12,55 1.62 2 4 —-5.30  1.52 1765 1.5
23 3 —2321 1.79 —18.37 1.70 23 4 —23.64 157 778 158
24 3 —3.91  1.73 —8.97  1.60 24 4 760 1.68 3.33  1.69
25 3 —11.37 1.77  —16.15 1.69 25 4 9.30  1.69 -0l 173
26 3 9.93 1.75 2.26  1.65 26 4 18.01 1.74 —17.54 179
27 3 437 1.88 6.63 1.75 21 4 94 168 9.60 1.70
2% 3 261 1.82 12,69 1.73 28 4 —28  1.72 3.82  1.80
29 3 65 190 —1054 1.79 20 4 —2582 166 70 172
30 3 —81 182 —1475 1.72 30 4 —250 1.73 —98 181
5 5 17497 25 —669.65 25
6 5 —267.19 20 —536.52 .20 6 6 9.89 24 —237.09 .25
75 181 .36 17.72 .37 76 —359.04 .16 151.77 .16
8 5  -25.15 .45 89.25 .45 8 6 —65.16 .35 309.24 .35
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Table 3. Continued.

L m Cé’m a Sé’m a - m C Im g Sff’m a
9 5 —16.66 72 5431 .73 9 6 62.68 46 22243 47
10 5 —49.30 91 —50.64 91 10 6 —37.42 b9 —79.02 .58
11 5 3830 1.18 48.89 1.16 11 6 —1.60 .85 34.47 .88
12 5 30.69 1.33 8.00 1.32 12 6 325 1.03 39.23  1.00
13 5 57.85 1.50 65.93  1.46 13 6 —35.67 1.23 —5.78 1.27
14 5 29.45 1.54 —16.88 1.52 14 6 —19.38  1.33 2.80 1.28
15 5 1420  1.55 8.11 1.51 15 6 33.62 1.41 —37.54 1.47
16 5 —14.51 147 —1.31  1.40 16 6 14.84 141 —34.65 1.38
17 5 —-17.53 1.50 534 1.40 17 6 —-14.19 136 —28.20 1.40
18 5 7.25  1.53 24.82  1.49 18 6 13.88 145 —14.41 1.42
19 5 12.66  1.62 26.97 1.46 19 6 —-1.72  1.37 17.54 141
20 5 —11.96 1.62 —6.51 1.54 20 6 12,91 1.57 —.94 1.49
21 5 1.30 1.75 49 1.61 21 6 —14.56 1.46 49 1.48
22 5 —2.29 1.72 1.05 1.65 22 6 9.33 1.54 —8.42 149
23 5 1.05 1.82 -1.12 1.71 23 6 —14.29  1.53 15.59  1.51
24 5 —6.54 1.74 —20.37 1.66 24 6 3.71  1.65 2.96 1.61
25 5 —9.05 1.82 —4.54  1.71 25 6 18.14  1.65 41 1.64
26 5 9.00 1.78 8.47 1.73 26 6 11.56  1.74 —-9.97  1.70
27 5 15.71  1.87 13.78  1.79 27 6 .13 1.70 763 1.70
28 5 10.16  1.87 —2.62 181 28 6 —-3.08 1.75 9.45 1.71
29 5 —7.11  1.90 143  1.84 29 6 12,57  1.71 4.56  1.72
30 5 —3.62 1.88 —-5.36 181 30 6 03 1.77 2.60 1.75
7 7 1.25 31 24.43 31
8 7 67.16 .20 74.63 21 8 8 —123.89 38 120.46 .39
9 7 —118.49 38 —96.59 37 9 8 188.43 .28 —3.15 28
10 7 8.14 .35 —3.06 .36 10 8 40.64 38 —91.76 .39
11 7 4.72 .63 —89.51 .62 11 8 —6.18 43 24.20 42
12 7 —18.61 .66 35.21 .66 12 8 —25.73 .51 16.44 .52
13 7 2.17 .98 —7.35 .98 13 8 —9.89 .74 —9.66 72
14 7 37.46  1.02 —4.71  1.02 14 8 —34.69 .82 —15.08 .82
15 7 59.97 1.23 6.44 1.23 15 8 —3245 1.04 21.79  1.01
16 7 —7.59 1.22 —8.46  1.22 16 8 —-21.12  1.03 5.61 1.01
17 7 23.48  1.29 —6.02  1.29 17 8 37.89  1.19 4.02  1.14
18 7 6.70  1.29 584 1.31 18 8 3099  1.23 223 1.21
19 7 741 141 —7.38 1.39 19 8 31.23  1.29  —10.80 1.24
20 7 —20.06 1.44 .06 1.46 20 8 534 1.27 4.02  1.30
21 7 —10.16  1.53 4.79  1.50 21 8 —18.11  1.39 3.52  1.35
22 7 1492 1.64 4.16 1.63 22 8 —25.64 1.38 2,59 141
23 7 —-5.60 1.67 —-1.94  1.67 23 8 5.06 1.41 —2.23  1.41
24 7 —-4.49  1.70 3.46  1.66 24 8 15.98  1.52 —5.08 1.55
25 7 8.10 1.70 —-6.39  1.70 25 8 6.47 1.58 1.84 1.58
26 7 —2.32  1.76 2.88 1.73 26 8 412 1.63 2.04 1.65
27 7 —12.43 1.75 —2.65 1.74 27 8 —10.48 1.67 —10.53 1.67
28 7 —-1.05 1.82 5.84 1.82 28 8 —-3.81 1.67 —4.83  1.70
29 7 —4.17 1.83 —5.28 1.82 29 8 —14.62  1.70 10.61  1.68
30 7 5.99  1.83 —.08 1.84 30 8 1.59  1.71 2,78 1.72
9 9 —48.12 48 96.60 48
10 9 125.45 20 —=37.55 .20 10 10 100.29 38 —24.27 .38
11 9 —31.68 42 41.97 42 11 10 —b52.22 32 —18.37 .32
12 9 41.63 .32 25.25 .32 1210 —6.43 .36 30.65 .36
13 9 24.50 51 45.15 53 13 10 40.85 4 —37.30 .40
14 9 32.68 49 28.68 47 14 10 38.80 43 —2.07 43
15 9 12.31 .79 37.79 .80 15 10 10.60 b7 14.77 5T
16 9 —23.17 78 =39.09 7 16 10 —11.99 .59 11.94 .59
7 9 2.98 93 —28.98 93 17 10 —4.03 .78 17.80 .78
18 9 —18.99 .99 36.39 97 18 10 5.11 .82 —5.46 .82
19 9 3.34  1.10 6.74 1.10 19 10 —33.16 .99 —7.41 98
20 9 18.34  1.18 —6.46  1.17 20 10 —32.31  1.04 —5.89  1.05
21 9 16.25 1.23 9.23 1.22 21 10 —11.08 1.14 —1.56 1.13
22 9 6.25 1.30 9.78 1.27 22 10 544 1.20 24.04 1.22
23 9 A3 144 —14.92 1.43 23 10 15.02  1.23 —2.88 1.22
24 9 —10.24 146 —18.65 1.42 24 10 993 1.26 17.70  1.30
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Table 3. Continued.

C m C'Ylm g Sff’m ¢ m C’Yff’m o Sﬁm a
25 9 2829 1.56 20.30 54 25 10 10.03  1.35 -3.96 1.35
26 9 —1149 1.56 2.06  1.53 26 10 —13.83 141 —4.40 1.45
27 9 92 1.64 11.66 1.62 27 10 —=13.96 1.49 —.02 1.51
28 9 9.23  1.69 —8.99 1.66 28 10 —9.75  1.48 8.87  1.50
29 9 —2.22  1.72 —-1.64 1.70 29 10 13.85  1.59 4.47  1.61
30 9 -9.56 1.76 —11.32 1.74 30 10 3.00 1.52 —6.44 1.56
11 11 45.82 57T —69.53 .57
12 11 11.35 15 —6.47 15 12 12 —2.36 27 —11.04 27
13 11 —44.49 .44 —4.50 .44 13 12 —-31.30 18 88.05 18
14 11 15.50 23 —39.01 23 14 12 8.51 23 —30.99 .23
15 11 —.89 45 18.28 .45 15 12 —32.56 .27 15.50 .28
16 11 19.28 .32 —2.93 .32 16 12 19.73 .24 6.89 .25
17 11 —=15.87 .58 10.24 .57 17 12 28.96 .37 20.40 .37
18 11 —7.86 54 2,12 .54 18 12 —29.46 33 —16.31 .33
19 11 15.57 75 10.71 .76 19 12 —2.47 .55 8.87 .54
20 11 14.67 77 —19.15 78 20 12 —6.42 .53 18.20 .53
21 11 7.78 95 —35.64 97 21 12 —2.90 .76 15.11 .75
22 11 —4.67 1.01 —=17.13 1.02 22 12 2.85 .76 —7.92 .75
23 11 8.58 1.13 16.64 1.15 23 12 16.70 97 —=12.70 .95
24 11 13.79  1.20 18.71  1.22 24 12 11.76 .99 —5.33 .96
25 11 2,45 1.30 9.48 1.31 25 12 —8.81 1.12 12,46  1.11
26 11 —2.06 1.29 .86 1.31 26 12 —17.22  1.17 142 1.11
27 11 3.96  1.36 —8.58 1.4l 27 12 —7.76  1.25 74 1.24
28 11 —4.61 1.42 89 1.43 28 12 112 1.24 11.68 1.19
29 11 —7.40 1.45 7.24  1.49 29 12 —2.63 1.33 —2.95 1.32
30 11 —-9.76  1.51 9.48 1.54 30 12 15.10  1.31  —=11.48 1.28
13 13  —61.46 .28 68.68 .27
14 13 32.16 .06 45.17 .06 14 14 —51.88 .24 —4.97 .23
15 13 —28.55 .24 —4.13 .24 15 14 5.26 .09 —24.43 .09
16 13 13.80 .09 1.11 .09 16 14 —19.20 18 —38.78 18
17 13 16.41 .24 20.53 .24 17 14  —14.13 A1 11.38 A1
18 13 —6.33 A1 —34.87 A1 18 14 —8.06 19 —13.02 18
19 13 —7.53 29 —28.09 .29 19 14 —4.58 14 —13.14 .14
20 13 27.50 18 6.99 18 20 14 11.80 22 —14.39 .22
21 13 —=19.11 .34 13.84 .35 21 14 20.25 .23 7.56 .23
22 13 —=17.07 .30 19.62 .30 22 14 11.17 .33 7.82 .33
23 13 —11.43 .50 —4.44 51 23 14 7.64 .40 —2.47 .40
24 13 —3.07 .56 3.39 .56 24 14 —19.82 .52 —1.73 .52
25 13 7.49 .73 —12.00 .74 25 14 —-20.74 .67 7.30 .68
26 13 54 .84 1.33 .84 26 14 8.34 .80 7.06 .79
27 13 —4.26 98 —3.80 .99 27 14 17.64 .95 10.12 .97
28 13 1.06 1.03 723 1.05 28 14 —-8.00 1.04 -—12.32 1.03
29 13 -1.11 1.15 —2.00 1.16 29 14 -5.73 111 —-3.24 1.11
30 13 14.86 1.12 1.81 1.14 30 14 522 1.13 6.85 1.13
15 15 —=19.24 37 —4.94 37
16 15 —14.52 12 —32.70 12 16 16 —37.32 .54 3.35 .54
17 15 5.31 27 5.27 27 17 16 —30.14 .26 3.84 .25
18 15  —40.58 A7 —20.22 A7 18 16 10.79 44 6.84 43
19 15 —=17.82 30 —14.11 .30 19 16 —21.58 .33 —6.83 .33
20 15 —25.93 .24 —.76 .25 20 16 —11.98 .46 .06 .45
21 15 17.62 .34 10.59 .34 21 16 7.87 43 —6.54 43
2215 25.77 .39 4.80 .40 2216 40 .52 —6.97 .51
23 15 18.45 .50 —3.57 .49 23 16 6.34 .58 11.49 .59
24 15 6.38 .60 —15.85 .61 24 16 9.16 .69 3.21 .68
25 15 —4.30 .68 —7.20 .68 25 16 97 82 —12.98 .82
26 15 —13.74 .81 8.23 .82 26 16 1.63 .88 —5.85 .88
27 15 —2.13 97 2.18 97 27 16 3.62 93 3.43 .92
28 15 —=11.69 1.02 —2.50  1.04 28 16 —4.06 1.04 -—13.15 1.05
29 15 —9.09 1.16 —7.47 1.16 29 16 —40 1.19 —14.90 1.19
30 15 —.29 1.19 —.08 1.22 30 16 —9.40 1.21 449 1.21
17 7 —34.08 .63 —19.62 .64
18 7 3.54 .26 4.53 .26 18 18 2.39 71 —-10.87 71
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Table 3. Continued.

C m C'Ylm g Sff’m g ¢ m C’Yff’m o Sﬁm g
19 17 29.10 52 —15.01 52 19 18 34.55 31 —9.52 31
20 17 4.39 36 —13.52 .36 20 18 14.74 .58 —.79 .59
21 17 —6.77 .53 —7.18 .53 21 18 25.72 48 —=10.97 48
2217 8.81 45 —=14.35 .45 22 18 9.96 62 —16.22 .62
23 17 —5.53 52 —12.51 .52 23 18 8.34 .64 —14.20 .64
24 17 —12.34 .60 —5.86 .60 24 18 —1.12 .66  —10.01 .67
25 17 —14.96 72 —3.20 72 25 18 74 .76 —15.39 77
26 17 —11.94 .83 8.25 .83 26 18 —13.63 .87 5.19 .87
27 17 3.46 98 .89 97 27 18 —2.96  1.00 8.85 1.01
28 17 13.07  1.03 =512 1.03 28 18 5.32  1.04 —4.20  1.05
29 17 —-1.05 1.15 —-3.98 1.15 29 18 —4.74  1.07 —4.33  1.10
30 17 —6.35  1.22 —4.28 1.21 30 18 —11.94 1.17 —7.66 1.17
19 19 —2.41 77 4.80 7T
20 19 —-3.21 44 10.71 44 20 20 4.41 .85 —11.92 .86
21 19  —26.98 .65 16.65 .65 21 20 —26.74 .40 16.19 .40
22 19 13.84 .56 —3.76 .56 22 20 —16.61 71 20.08 72
23 19 —5.37 .68 10.73 67 23 20 8.18 .60 —5.34 .60
2419 —4.27 .67 —8.11 .67 24 20 —4.91 .73 8.84 .73
25 19 7.84 .66 9.81 .66 25 20 —7.30 .78 —.40 .79
26 19 —2.13 .76 3.33 .76 26 20 6.60 .80 —11.54 .80
27 19 —.13 .84 —2.84 .84 27 20 —.89 .87 3.75 .87
28 19 5.99 .99 23.70 .99 28 20 —1.43 1.00 7.21  1.01
29 19 —5.61 1.17 577 117 29 20 —7.16 1.05 4.76  1.06
30 19 —12.95 1.20 229  1.19 30 20 —4.31  1.17 12.25  1.16
21 21 8.32 .84 —3.86 .85
22 21  —25.03 .59 23.66 58 22 22 —9.65 .96 2.22 .96
23 21 15.38 .72 11.82 73 23 22 —17.71 A7 4.66 47
24 21 6.03 .74 13.52 .74 24 22 3.68 .81 —3.86 .80
25 21 10.70 75 7.46 .76 25 22 —13.34 .68 4.11 .68
26 21 —8.98 .84 2.01 .84 26 22 10.87 .80 7.16 .80
27 21 4.94 77 —6.79 T 27 22 —5.72 .87 3.58 .86
28 21 6.56 .86 6.41 .86 28 22 —-1.77 .89 —6.63 .90
29 21 —9.51 .90 —5.28 91 29 22 12.29 .93 —1.00 .94
30 21 —=10.92 1.07 —6.70 1.07 30 22 —4.53  1.05 —8.72  1.05
23 23 3.06 91 —10.49 91
24 23 —6.38 67 —8.10 67 24 24 11.93  1.02 —-3.73  1.02
25 23 8.20 76 —11.85 75 25 24 3.99 .49 —8.33 .49
26 23 1.23 .84 11.25 .84 26 24 8.03 .84 14.53 .83
27 23 —5.06 78 —10.12 77 27 24 —.12 .66 —2.23 .66
28 23 5.60 91 3.14 91 28 24 10.60 78 —13.45 .78
29 23 —2.61 .81 2.79 .81 29 24 21 .82 —2.57 .82
30 23 4.79 .88 —9.64 .88 30 24 —2.57 91 —2.83 .90
25 25 10.77 .88 4.33 .87
26 25 3.72 .69 —.69 .69 26 26 .39 .97 1.95 97
27 25 12.04 .66 5.30 .65 27 26 —6.56 42 —2.23 42
28 25 6.39 85 —17.67 .85 28 26 11.77 .65 3.89 65
29 25 6.03 .68 8.42 .68 29 26 7.96 .56 —6.84 .56
30 25 3.15 91 —16.28 .90 30 26 1.47 .84 12.22 83
27 27 8.00 .81 1.02 .81
28 27 —8.10 73 1.07 73 28 28 7.12 .88 7.15 .88
29 27 —7.55 58 —.89 58 29 28 9.83 37 —5.87 37
30 27 —7.46 .76 12.54 77 30 28 —5.35 .64 —7.61 .64
29 29 13.25 .96 —5.41 98
30 29 4.01 .69 2.04 .70 30 30 3.08 1.16 7.60 1.15

The estimated accuracy of the various coefficients shown in Tables 2 and 3 show
that the lower degree coefficients are the best determined and the accuracy degrades as
the degree increases. This variation in accuracy is a reflection of the fact that satellite
tracking data was used to solve for the coefficients. As discussed in later sections,
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the sensitivity of the satellites to the harmonic coefficients decreases as the degree
increases. That is, the low degree coefficients produce large perturbations to the
orbital motion and the high degree coefficients produce much smaller perturbations.
The ability to recover high degree coefficients is a direct function of the accuracy of
the tracking data being utilized and also the geographic distribution of that data.
Since the high degree coefficients represent fine scale features in the gravity field it is
necessary to have wide geographic coverage, and accurate tracking data, to completely
capture such details. The low degree coefficients on the other hand represent the large
scale features (continental in size) and it is possible to accurately model such details
given sparser geographic coverage.

Overall, the accuracy of the geopotential acceleration is dependent on the con-
stants g, C{g’m and SML and the accuracy of the coordinate transformation from
body-fixed to inertial coordinates. The accuracy is also clearly dependent on the
degree of truncation of the infinite series describing the potential. It should be noted
that the quantity «a. enters the potential strictly as a scaling factor and thus does not
affect the accuracy of the geopotential computation. Of these possible error sources,
the accuracy of the (7@’,,,[ and gg’m coefficients is currently the limiting factor in precise
low-Earth orbit determination.
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